Scaling MPE Inference for Constrained Continuous Markov Random Fields with Consensus Optimization

نویسندگان

  • Stephen H. Bach
  • Matthias Broecheler
  • Lise Getoor
  • Dianne P. O'Leary
چکیده

Probabilistic graphical models are powerful tools for analyzing constrained, continuous domains. However, finding most-probable explanations (MPEs) in these models can be computationally expensive. In this paper, we improve the scalability of MPE inference in a class of graphical models with piecewise-linear and piecewise-quadratic dependencies and linear constraints over continuous domains. We derive algorithms based on a consensus-optimization framework and demonstrate their superior performance over state of the art. We show empirically that in a large-scale voter-preference modeling problem our algorithms scale linearly in the number of dependencies and constraints.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constrained Kronecker Deltas for Fast Approximate Inference and Estimation

We are interested in constructing fast, principled algorithms for scaling up decoding and parameter estimation in probability models such as Hidden Markov Models (HMMs) and linear-chain Conditional Random Fields (CRFs) with large state spaces. In this paper we present a principled extension of beam search to beam inference and learning. We present a new approach for approximate inference based ...

متن کامل

Combinatorial Markov Random Fields

A combinatorial random variable is a discrete random variable defined over a combinatorial set (e.g., a power set of a given set). In this paper we introduce combinatorial Markov random fields (Comrafs), which are Markov random fields where some of the nodes are combinatorial random variables. We argue that Comrafs are powerful models for unsupervised and semi-supervised learning. We put Comraf...

متن کامل

Efficient Inference of Continuous Markov Random Fields with Polynomial Potentials

In this paper, we prove that every multivariate polynomial with even degree can be decomposed into a sum of convex and concave polynomials. Motivated by this property, we exploit the concave-convex procedure to perform inference on continuous Markov random fields with polynomial potentials. In particular, we show that the concave-convex decomposition of polynomials can be expressed as a sum-of-...

متن کامل

Constrained Discrete Optimization via Dual Space Search

This paper proposes a novel algorithm for solving NP-hard constrained discrete minimization problems whose unconstrained versions are solvable in polynomial time such as constrained submodular function minimization. Applications of our algorithm include constrained MAP inference in Markov Random Fields, and energy minimization in various computer vision problems. Our algorithm assumes the exist...

متن کامل

Continuous Relaxation of MAP Inference: A Nonconvex Perspective

In this paper, we study a nonconvex continuous relaxation of MAP inference in discrete Markov random fields (MRFs). We show that for arbitrary MRFs, this relaxation is tight, and a discrete stationary point of it can be easily reached by a simple block coordinate descent algorithm. In addition, we study the resolution of this relaxation using popular gradient methods, and further propose a more...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012